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ABSTRACT 
Single crystal superalloy turbine blades used in high pressure 
turbomachinery are subject to conditions of high temperature, 
triaxial steady and alternating stresses, fietting stresses in the 
blade attachment and damper contact locations, and exposure to 
high-pressure hydrogen. The blades are also subjected to 
extreme variations in temperature during start-up and shutdown 
transients. The most prevalent high cycle fatigue (HCF) failure 
modes observed in these blades during operation include 
crystallographic crack initiation/propagation on octahedral 
planes, and noncrystallographic initiation with crystallographic 
growth. Numerous cases of crack initiation and crack 
propagation at the blade leading edge tip, blade attachment 
regions, and damper contact locations have been documented. 
Understanding crack initiation/propagation under mixed-mode 
loading conditions is critical for establishing a systematic 
procedure for evaluating HCF life of single crystal turbine 
blades. 

This paper presents analytical and numerical techniques for 
evaluating two and three dimensional subsurface stress fields in 
anisotropic contacts. The subsurface stress results are required 
for evaluating contact fatigue life at damper contacts and 
dovetail attachment regions in single crystal nickel-base 
superalloy turbine blades. An analytical procedure is presented 
for evaluating the subsurface stresses in the elastic half-space, 
based on the adaptation of a stress function method outlined by 

Lekhnitskii [I]. Numerical results are presented for cylindrical 
and spherical anisotropic contacts, using finite element analysis 
(FEA). Effects of crystal orientation on stress response and 
fatigue life are examined. Obtaining accurate subsurface stress 
results for anisotropic single crystal contact problems require 
extremely refined three-dimensional (3-D) finite element grids, 
especially in the edge of contact region. Obtaining resolved 
shear stresses (RSS) on the principal slip planes also involves 
considerable post-processing work. For these reasons it is very 
advantageous to develop analytical solution schemes for 
subsurface stresses, whenever possible. 

INTRODUCTION 

Single crystal nickel base superalloy turbine blades are 
especially prone to frettingkontact fatigue damage because the 
subsurface shear stresses induced by fretting action at the 
damper contact and blade attachment regions can result in 
crystallographic initiation and crack growth along octahedral 
planes. The presence of fretting in conjunction with a mean 
stress in the body of a component can lead to a marked 
reduction in HCF life, sometimes by a factor as great as 10 [2, 
31. Fretting occurs when assemblies of components such as 
blade and disk attachment surfaces, bolt flanges, snap fit areas, 
and other clamped members are subjected to vibration, 
resulting in contact damage. The combined effects of 
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corrosion, wear, and fatigue phenomena at the fretting contact 
facilitate the initiation and subsequent growth of cracks. 

Currently the most widely used single crystal nickel base 
turbine blade superalloys are PWA 1480, PWA 1484, RENE’ 
N-5 and CMSX-4. These alloys play an important role in 
commercial, military and space propulsion systems [5-81. 
Military gas turbine mission profiles are characterized by 
multiple throttle excursions associated with maneuvers such as 
climb, intercept and air-to-air combat. This mission shifts 
attention to fatigue and fracture considerations associated with 
areas below the blade platform which contain various stress 
risers in the form of buttresses and attachments. Blade-disk 
attachment areas and blade frictional damping devices are 
particularly prone to fretting/galling fatigue damage [5]. 
Rocket engine service presents another set of requirements that 
shifts emphasis to low temperature fatigue and fracture 
capability with particular attention given to environmental 
effects (i.e. high pressure hydrogen gas exposure, thermal, and 
cryogenic). Attention has shifted from oxidation erosion, 
creep, stress rupture and creep fatigue damage mechanisms to 
the micromechanics of fatigue and fracture observed between 
room temperature and 871 C (1600 F). Fatigue crack initiation, 
threshold, and Region I1 fatigue crack growth are of primary 
importance and the demand for improvements in fracture 
mechanics properties for turbine blade alloys is imminent [5]. 

Study of crack initiation under mixed mode loading is 
important for understanding fretting fatigue crack initiation in 
single crystals. The subsurface shear stresses induced by 
fretting action can result in crystallographic initiation of failure, 
under mixed mode loading conditions. Fretting fatigue at low 
slip amplitudes that induces little or no surface damage can 
result in greatly reduced fatigue life with accelerated subsurface 
crystallographic crack initiation, akin to subsurface shear stress 
induced rolling bearing fatigue. The complex interaction 
between the effects of environment and stress intensity 
determines which point-source defect species initiates a 
crystallographic or noncrystallographic fatigue crack [5-81. 

This paper presents analytical and numerical methods to 
evaluate the subsurface stresses in face-centered cubic (FCC) 
single crystal cylindrical and spherical contacts as a function of 
crystallographic orientation, and contact loads. The subsurface 
stresses evaluated are subsequently used to assess contact 
fatigue life, based on a fatigue life model developed previously 
[9-121. The motivation for this work is provided by the 
crystallographic subsurface cracks induced at the damper 
contact locations in single crystal turbine blades. Figure 1 
shows a schematic of the damper contact location. Figure 2 
shows a close-up view of the subsurface induced 
crystallographic crack propagating on intersecting octahedral 
planes, ultimately resulting in a pyramidal hole in the blade 
platform [ 1 31. 

There is a considerable body of work done on fretting fatigue 
damage of isotropic polycrystalline materials. Some 
representative examples are by Hills and Nowell [2], 
Giannokopoulos and Suresh [ 141, Swolwinsky and Farris [ 151, 
Attia and Waterhouse [16], Hoeppner [17], Vingsbo and 
Soderberg [IS], and Ruiz, et al [19]. However, studies on 

subsurface contact stresses and mechanics of fretting fatigue 
crack initiation and crack growth in orthotropic single crystal 
materials are very few. There is an extensive body of literature 
available in the classical area on the evaluation of subsurface 
stresses for nonconformal contacts in isotropic materials using 
analytical methods [20]. However, the amount of published 
literature involving analytical solutions in anisotropic 
nonconformal contacts is considerably less. Green and Zerna 
[21] looked at the 2D anisotropic contact problem in 1954, for a 
specific type of anisotropy. Willis [22] examined the Hertzian 
elliptical contact problem for anisotropic half-spaces using a 
Fourier transform method. Turner [23] examined the spherical 
contact between transversely isotropic nonconformal bodies. 
Fan and Keer [24] examine the 2D contact problem using the 
analytic hnction continuation approach based on the Stroh 
formulation 1251. Vlassak, et al [26] looked at calculating an 
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Figure 1 .  Damper contact locations on the turbine blade 

-. 

Figure 2. Crystallographic crack initiation at the damper contact 
location shown in Fig. 1 [ 131 

effective indentation modulus for anisotropic contacts. 
Analytical solutions were developed for indenters of arbitrary 
shape being pressed into an anisotropic half-space. For 
axisymmetric indenters, a limited family of Green’s functions is 
used to obtain a solution for the displacement field. This 
solution is denoted as an equivalent isotropic solution. 

In this paper, we present an analytical solution for a cylindrical 
contact, using the stress function approach outlined by 
Lekhnitskii [I] ,  for an anisotropic half space under conditions 
of generalized plane strain problem. Finite element subsurface 
stress results of the cylindrical and spherical anisotropic 
contacts modeling the damper contact locations shown in 
Figure 1 are also presented. 
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NOMENCLATURE 
Deformation Mechanisms and Elastic Anisotrow in FCC 
Single Crvstals. 
Nickel based single-crystal materials are precipitation- 
strengthened, cast, mono-grain superalloys based on the Ni-Cr- 
AI system. The microstructure consists of approximately 60% 
to 70% by volume of y’ precipitates in a y matrix. The y’ 
precipitate, based on the intermetallic compound Ni3AI, is the 
strengthening phase in nickel-base superalloys and is a Face 
Centered Cubic (FCC) structure. The y’ precipitate suspended 
within the ymatrix also has a FCC structure and is comprised 
of nickel with cobalt, chromium, tungsten and tantalum in 
solution [5]. 

Deformation mechanisms in single crystals are primarily 
dependent on microstructure, orientation, temperature, and 
crystal structure. The operation of structures at high 
temperature places additional materials constraints on the 
design that are not required for systems that operate at or near 
room temperatures. In general, materials become weaker with 
increasing temperature due to thermally activated processes, 
such as multiple slip and cross-slip. At temperatures in excess 
of approximately half the homologous temperature (the ratio of 
the test temperature to the melting point, = T/T,,,), diffusion 
controlled processes (e.g., recovery, recrystallization, 
dislocation climb and grain growth) become important, which 
results in further reductions in strength. Slip in metal crystals 
often occurs on planes of high atomic density in closely packed 
directions. The four octahedral planes corresponding to the 
high-density planes in the FCC crystal have three primary slip 
directions (easy-slip) resulting in twelve independent primary 
< I  IO> { 1 1 1 } slip systems. The four octahedral slip planes also 
have three secondary slip directions resulting in twelve 
independent secondary < I  12> { 1 1 1 } slip systems. In addition, 
the three cube slip planes have two slip directions resulting in 
six independent <1 IO> { 100) cube slip systems. Thus there are 
twelve primary and twelve secondary slip systems associated 
with the four octahedral planes and six cube slip systems with 
the three cube planes, for a total of thirty slip systems [27]. At 
high temperatures, slip has been observed in non-close-pack 
directions on the octahedral plane, and on the cube plane, in 
FCC crystals. 

Elastic response of FCC crystals is obtained by expressing 
Hooke’s law for materials with cubic symmetry. The 
generalized Hooke’s law for a homogeneous anisotropic body 
in Cartesian coordinates (x, y, z with origin at point 0) is given 
by Eq. ( 1 )  [ I ,  271. 

i.l= b y 1  {ff} ( 1 )  
[u ,~ ]  is the matrix of 36 elastic coefficients, of which only 21 are 
independent, since [a,] =[a,,]. The elastic properties of FCC 
crystals exhibit cubic symmetry, also described as cubic 
syngony. The elastic properties of materials with cubic 
symmetry can be described with three independent constants 
designated as the elastic modulus, shear modulus, and Poisson 

ratio [ 11 and hence [al,] can be expressed as shown in Eq. (2), in 
the material coordinate system (FCC crystal axes are parallel to 
x, y and z coordinate axes). In contrast to the FCC single 
crystal material, an isotropic material can only have two 
independent eiastic constants. 

0 0 0 O a , O  I 0 0 0 0 0 0 ,  

The elastic constants in 

GI 
1 1 ,a1, -- .au = -, au - -5. - -v. 

E, G, E, E ,  

the generalized Hooke’s law of an 
anisotropic body, [a,], vary with the direction of the coordinate 
axes. For orientations other than the (x, y, z) axes, the [a,,] 
matrix varies with the crystal orientation. In the case of an 
isotropic body the constants are invariant in any orthogonal 
coordinate system. Consider a Cartesian coordinate system (x’, 
y’, z’) that has rotated about the origin 0 of (x, y, z). The 
elastic constant matrix [a’,] in the (x’, y’, 2’) coordinate system 

that relates {E ’ }  and {a‘) ((E3)=la,’l k3]) is given by 
the following transformation [I]. 

(3) 
-1 n-1 

The transformation matrix [Q] is a 6x6 matrix that is a function 
of the direction cosines between the (x, y, z) and (x’, y’, z’) 
coordinate axes. Knowing the state of stress at a given location, 
in the material coordinate system (x, y, z), the resolved shear 
stresses on the twelve primary octahedral slip systems, denoted 
by T’, T*, ..., T”, can be readily obtained using the 
transformation given by Eq. (4) [30]. The slip plane and slip 
direction of the twelve primary octahedral slip systems are 
given in Table 1 [27]. The resolved shear stresses on the 
secondary octahedral and cube planes are obtained using 
similar expressions [9,27]. 

I 0 - 1  1 0 -1- 
0 - 1 1 - I 1  0 
1 - 1 0  0 1 - 1  
- 1  0 1 1 0 -1 ‘om. 
- 1  1 0 0 -1  - 1  cTn 

0 1 - 1  - 1  -1  0 0- 

0 1 - 1  - 1  1 0 Dm 

1 0 - 1  - 1  0 - 1  om 

b (4) I -1  0 0 -1  - l ‘ov  

0 -1  1 - 1  -1  0 

. I  0 1 - 1  0 -1 
- 1 1  0 0 1 - 1  

Analytical Solution for the Two-Dimensional Stress 
Distribution (Generalized Plane Deformation) in an 
AnisotroDic Elastic Half-space 

The damper contact regions shown in Figure 1 will be modeled 
as an elastic anisotropic half-space. This approximation is 
reasonable since Hertzian type contact stresses are confined to 
very small volumes in the vicinity of the contact. An analytical 
procedure will be presented for evaluating the subsurface 
stresses in the elastic half-space using a stress function 
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approach outlined by Lekhnitskii [ 11. Lekhnitskii’s method for 
a general anisotropic body has been adapted for a orthotropic 
FCC single crystal half space. Figure 3 shows the elastic half- 
space subjected to normal traction N ( 4 )  and tangential traction 
T ( 4 )  over the region -a to +a on the x-axis. The traction forces 
are independent of z, and functions of x and y only. The 
stresses are also functions of x and y only. 

The equilibrium equations under generalized plane strain 
conditions, for an anisotropic halfspace, are expressed as 
follows [ 11: 

d r ,  ar, 
ax ay 
- +-- -0 

Note that the third equilibrium equation in Eqs. (5) is not used 
for plane strain condition for isotropic materials. However, 
because of shear coupling induced by anisotropy, the shear 
stresses r,, and tyz are nonzero, and are functions of x and y.  

The stress-strain relations, as defined by the Hooke’s law, Eqs. 
(l),  are given by 

E, =alIuX +a120,v +....+ a16rx,, 

cy = a I 2 o x  +a 0 + . . . . + U ~ ~ T , ~  22 Y 

(6) 

y, =a160x + a 2 6 u y  +....+ a66‘Lrxy 

where [a,,] are a function of crystallographic orientation. 

Under the assumptions of generalized plane strain, the 
subsurface stresses due to the applied traction forces can be 
determined as outlined below. 

The stress functions are given by 
(7) 

The p, are the roots of the cylindric; 
given by Eq. ( I  0), and z = x + w. 

~ 4 ( P ) . 4 ( P ) - C ( P ) =  0 

(9) 

characteristic equation, 

(10) 

Traction 

a I 
\ \ \ \ \ \ \ \ \ \ X \ \ \ \ \ Y \ \ \ \ \  

’ 
X 1 g ~ t m p i c ~ - ~ a c e  

Figure 3. Anisotropic elastic half-space under generalized 
plane deformation subjected to normal and tangential traction 

forces. 

:, = x + , u , y  

The normal traction force N ( 4 )  used is the Hertzian cylindrical 
contact pressure as ~ ( 4 )  = p , , / m a n d  

~ ( 6 )  = P,~~,/-, where po is the peak pressure and the 
coefficient of friction. The tangential traction force is based on 
a sliding contact and not a contact in partial slip. It must be 
noted that we are not solving a contact problem here, but rather 
a stress analysis problem in an elastic anisotropic half space 
subject to normal and tangential traction forces. The contact 
dimensions are obtained from a simulated Hertzian cylindrical 
contact. The semi-elliptical normal pressure distribution seen in 
isotropic cylindrical contacts is also true for anisotropic 
contacts [ 123. The stress solution has been programmed and 
subsurface stresses computed for various crystal orientations. 

Figure 4 shows the finite element model used for the numerical 
results. This ANSYS model represents an elastic anisotropic 
half-space and was developed using 8-node hexahedral 
elements (SOLID45’s) in the contact re& and 4-node 
tetrahedral elements (SOLID45’s) in the far field. The load 

(8) 

applied directly to the finite element model. This applied stress 
problem does not require the use of contact elements. 

Figure 5 shows a comparison of the analytical and finite 
element oy stress fields for a = 0.01 inch, po = 260 ksi, and for 
the (x, y, z )  axes parallel to the edges of the FCC crystal, Le. x = 
<loo>, y = <010> and z = <001> (Case A). The analytical 
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solution shows excellent agreement with the finite element 
numerical solution. The FEA solution is evaluated at the 
midplane, where generalized plane strain conditions prevail. It 
was observed that the stress field approaches the 2-D 
generaiized piane strain solution after a short distance fiom the 
edges, indicating that the analytical solution could be used 
effectively for many practical 3-D contact problems. The 
advantage of this analytical solution is that it is accurate, and 
extremely quick to compute, anywhere in the computational 
domain. The subsurface stress solutions are discussed in greater 
detail in later sections. 

Figure 4. Three-Dimensional FE model of the elastic 
anisotropic half space [28] 

Figure 5. Stress (cy) contours using analytical solution and 
finite element (ANSYS) solution 1281 

Finite Element Analvsis (FEA) of the Cvlindrical 
AnisotroDic Contact Problem 

A cylindrical indenter on an anisotropic half-space contact 
model (Figure 6) was developed in ANSYS. The cylindrical 
indenter was modeled using 4-node tetrahedral elements 
(SOLID45's) and the plate was modeled using 8-node 
hexahedral elements (SOLID45's) in the contact region and 4- 
node tetrahedral elements (SOLID45's) in the far field. 
Surface-to-surface contact elements (CONTA 174 and 
TARGE170) were used at the interface of the two bodies. 
Because of very high stress gradients in the contact region, a 
highly refined FE mesh must be used to obtain reliable stress 
solutions. The densely meshed regions in both the half- 
cylinder and half-space have roughly the same element size. 
The refined mesh and the iterative solution of the contact 

problem require computationally intensive resources, both in 
time and space. A typical analysis takes two CPU hours on a 
2.4 GHz multiprocessor PC-based workstation. 

The analytical solution outlined in the previous section can be 
used for obtaining subsurface stresses in a half space for a 
known or applied normal and tangential tractions. The 
analytical solution was obtained by applying a semi-elliptical 
normal pressure distribution over the contact width. The 
contact width, 2a, was estimated initially using a Hertzian 
isotropic calculation. The FEA contact model converges to the 
correct anisotropic contact width. Figure 7 shows a 
representative comparison of subsurface stresses computed 
using the analytical solution and FEA contact model (Figure 6). 
Excellent agreement is seen between the two solutions. 

The crystallographic orientations are designated by successive 
rotations about the (xrz) axes, as follows: yis rotation about X 
axis, A is rotation about Y'axis, and @is rotation about Z"axis. 
Table 2 shows 4 different crystallographic orientations 
considered in the analysis. Figure 8 shows some representative 
contour plots of the resolved shear stress values for slip systems 
rl, r3, and ql, for two different crystallographic orientations: 
Case B (A=15", TO", e=O") and Case C (A=-15", TO", e=O"). 
The plane on which the c ~ c k  wi!l rwcleate will depend on the 
magnitude of the shear stress amplitude. Even though the 
contour plots show similarity between Cases B and C, the RSS 
values are very different, because of material orthotropy and 
the stresses are a strong function of both primary and secondary 
crystal orientation. 

Figure 6. 
FE model 
anisotropic 

Three-dimensional 
of a cylindrical 

contact [28] 
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Case A0 Y O  

A 0 0 
R +1s 0 

eo 
0 
0 

I ~. __ .p- 
~ Sigma X vs Depth (case 25) 

C 

1 '5 a - 1 .00E+05 

-1.50E+05 

-15 0 0 

+Sigma XANSYS 4 L n a l y t i c a l  - -  j 

D 0 0 

Sigma Y vs Depth (case 25) 

40 

-5 GOE+04 F-7 
t .- E -1.00E+05 

-1.50E+05 

, -200E+05' 

mils 

Figure 7. Comparison of FEA contact and analytical 
subsurface stresses a. and oy, as a function of depth, for 

crystallographic orientation defined by Case C (A=-15", yo" ,  
0=0") [28] 

Case B Case C 

bb bb 

Case B 
Tau 3 Case 17 

0 10 

dd 

Case B 
Tau 11 Case 17 

8 

6 

I 

1 

0 
0 5 10 

11 

dd 

Case C 

15 io o 10 15 

I I  

Figure 8. Contour plots of RSS I,, 73, and 711, for Cases B and 
C under the contact region [28] 

Finite Element Analysis (FEA) of the SDherical AnisotroDic 
Contact Problem 

A 3-D FEA of the spherical anisotropic contact problem was 
also performed using ANSYS. Figure 9 shows the FEA model 
of an isotropic spherical contact on a single-crystal plate. The 
sphere was modeled with 8-node hexahedral elements 
(SOLID45's) assuming linear-elastic isotropic material 
behavior. The plate was modeled with 20-node hexahedral 
elements (SOLID95's) and 10-node tetrahedral elements 
(SOLID95's). Linear-elastic anisotropoic material properties 
were used in the plate. The contacting surface between the two 
bodies was represented using ANSYS surface-to-surface 
contact elements with friction (CONTA174-TARGE 170). The 
indenter or damper is subjected to both normal and tangential 
loads and therefore frictional effects are incorporated. 

An analytical solution for the 3-D anisotropic contact problem 
was also obtained using the stress function approach outlined in 
Lekhnitskii [l]. However, because of the complexity of the 3- 
D analytical solution, its presentation is reserved for a separate 
article. The numerical results based on the FEA are reported 
herein. 
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Figure 9. Three-dimensional FE model of the spherical 
isotropic indenter on a single crystal orthotropic substrate. 

The Hertzian solution for a spherical isotropic contact on a flat 
plate is given by 

where E' is the effective or composite modulus at the contact. 
To derive an effective modulus for the single crystal orthotropic 
contact we refer to J. R. Turner's paper [23]. We have adapted 
his work for a transversely isotropic contact to an orthotropic 
contact in question. The stress-strain relation in the material 
coordinate system is given by: 

-VH 

1 

- "V 

-VI' 

- Vv 
i. 

The solution for the orthotropic spherical contact can be 
derived as 

where P is the normal load, a is the contact radius, R is the 
sphere radius, and 

Eor,ho is an effective contact modulus that can be used to 
estimate the contact patch size, for the single crystal contact. 
For example, for crystal orientation Case A (A=Oo, y=Oo, e=O"), 
R = 0.25 in and P = 79.5 Ib, we can calculate a contact radius 
from Eq. (15) as ao,ho=0.00814 in. The contact radius 
calculated using FEA was af,= 0.0092. The contact radius for 
the isotropic Hertzian calculation (Eq. 13) is a,,= 0.0104 in 
(based on El = 18.1E06 psi, E2 = 3 1.2E06 psi, v1 = 0.3892, v2 = 
0.293). The effective modulus, Eon-, is very useful for 
ca!cda?ing the effective contact radius. Once the effective 
contact radius, aonho, is known, we can calculate the maximum 
contact pressure po. The semi-elliptic pressure distribution, 

p o d G ,  can be applied as a normal pressure on the half- 
space in the FEA, thus effectively decoupling the contact 
problem with the subsurface stress calculations and hence 
greatly simplifying the numerical problem. 

Case A 

111 = rn m a  



Case B 

M 
m m m m  I 

P SLC 
1.3u 

n* n L . p  reprs.. e17 *a. m 91 c u . 0  55. m1 m.sah nrmi, 6H21S2 

Figure 10. Spherical orthotropic contact radius as a function of 
crystal orientation 

Figure 10 shows the contact patch calculated using FEA contact 
elements, for crystal orientation Cases A and D. Even though 
these two cases represent very different crystal orientations, the 
contact radius does not vary significantly from afe,= 0.0092 in. 
However, it must be pointed out that the FEA mesh size in the 
contact region was 0.001 in square, and for better resolution the 
mesh size has to be refined, further highlighting the problems 
associated with FEA of anisotropic contact problems. 
Numerical accuracy issues in subsurface stresses as a function 
of mesh refinement in contact problems is discussed in detail 
by Beisham and Sinclair [29]. It is very advantageous to 
calculate the effective contact radius, aohor and solve the 
applied stress problem, rather than resorting to solving the 
problem using contact elements. This approach is the most 
effective way to solve contact problems involving single crystal 
substrates, especially for design iterations. This approach is 
illustrated in Figure 11 .  

Figure 1 1 .  Decoupling the contact problem with subsurface 
stresses using the effective contact radius, aonho, using Eq. (1 5), 

and applying Hertzian normal loads over the contact patch 

Case B Case B 

Figure 12. Comparison of subsurface stresses between the full 
FEA contact solution and simulated contact, for the orthotropic 

spherical contact 

Representative subsurface stress results, using this decoupling 
approach and the full contact solution, are shown in Figure 12. 
Comparison shows excellent agreement between the two 
approaches. 

Cylindrical and spherical contact simulations were performed 
for a wide range of crystallographic orientations. Normal 
contact pressure for these cases was compared with that of Case 
A (A=O", y=O", e=O") where the coordinate axes are parallel to 
the crystal axes, to see the effect of crystal orientation. It was 
found that even for large orientation deviations from Case A, 
the normal contact pressure and contact patch size did not vary 
substantially, indicating that the effective contact modulus, 
E&o, and contact width (cylindrical) or radius (spherical), 
aonho, are relatively insensitive to variations in crystallographic 
orientation. The Eonho and aortho values based on Case A 
orientation can be used for nearly all practical blade casting 
crystallographic orientation deviations from the ideal. This 
lends further credibility to using the simulated contact model 
for FEA, which leads to greatly simplified contact subsurface 
stress analysis. Even though the contact normal pressure does 
not change substantially, the subsurface stresses are a strong 
function of orientation. The simulated contact method is very 
advantageous for performing repeated subsurface stress 
calculations required for fatigue life calculations. The full 
contact solutions typically took 7-8 hours to run on a fast 
multiprocessor PC-based workstation, while the simulated 
contact took only 1-2 minutes to execute on the same machine. 

Figure 13 shows the weighted percentage differences in contact 
pressure for some crystal orientations, as compared to Case A, 
for the spherical contact. It can be seen that the 
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Case . - Case B 

Case D 

Figure 13. The weighted percentage difference in normal 
contact pressure for the orthotropic and isotropic spherical 

contact, as compared to Case A 

deviation of normal pressure from Case A are within 2.5% for 
most practical situations. In contrast, the difference between 
the isotropic Hertzian contact (Eq. 13) with Case A is 
significantly higher (within 10%). 

Fatigue Considerations 

The fatigue crack nucleation and crack growth behavior of 
single crystal nickel superalloys is governed by a complex 
interaction between the operative deformation mechanism. 
stress intensity, and environmental conditions. The fatigue 
crack growth behavior is determined by the operative 
microscopic fracture mode. As a result of the two-phase 
microstructure present in single crystal nickel alloys a complex 
set of fracture modes exist based on the dislocation motion in 
the matrix (fi and precipitate phase (f). A fatigue life model 
was obtained by Arakere and Swanson [9], based on strain 
controlled LCF tests conducted at 1200 F in air for single 
crystal uniaxial smooth specimens, for four different specimen 
orientations <001>, < I  I I>, <213> and <01 I>. Several 
multiaxial fatigue damage theories, including critical plane 
methods, were evaluated to identify a suitable fatigue damage 
parameter that would fit the test data well. The maximum shear 
stress amplitude, Armax, on the slip systems was found to give 
the best tit for the test data, as shown in Figure 14. A power 
law curve fit for the data shown in Figure 14 was used as a 
fatigue life estimation equation ( I  200 OF), given below. 

0 
10 100 1000 10000 lOOOD0 1 o o o m  

CvclestoFatbm 

Figure 14 . Fatigue damage parameter, A tmax vs. Cycles to 
failure [9] 

The fatigue damage parameter, Arm, has been tested for an 
extensive set of single crystal fatigue data, under a range of 
environmental conditions, and was found to be effective 19, 
111. A cylindrical or spherical indenter contacting a single 
crysta! substrate subject IO a vibratory normal and tangential 
load will result in subsurface cyclic fatigue stresses. These 
fatigue stresses can lead to subsurface crystallographic cracks, 
as shown in Figure 2 .  Figure 8 shows the contour plots of RSS 
on the primary octahedral slip systems, for a cylindrical contact 
loaded with static normal and tangential loads. If the tangential 
loads are cycled, as would happen during fretting fatigue 
loading, we can compute the shear stress amplitudes ArI ,  
Ar2 ,......, ArI2, in the subsurface region. The subsurface 
location that yields the maximum A r  value is likely to initiate a 
crystallographic fatigue crack. 

We consider a critical subsurface location near the leading edge 
of contact, as shown in Figure 15. We will consider the 
situation where the tangential traction force, q(x),  is cycled 
between a positive and a negative value, and compute the shear 
stress amplitudes AT on the primary planes. Because the 
secondary crystallographic orientation is not controlled during 
the blade casting process, the variation in A rdue to the 
variation in secondary orientation alone is of interest. This 
effect is illustrated in Figure 16. We see that maximum AT 
(Arg, and Aril in this case) values vary by 32% purely because 
of variation in secondary crystal orientation between 0" to 90". 
This can result in an order of magnitude variation in fatigue life 
calculated from Figure 14. 
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p(x)=  *a P 

i Single crystal 
halfspace 

Critical subsurface point near 
leading edge of contad: 
x = 0.001 in,z = 0, Y = 0.ow 
a-ODl y p .  = 260 kri, p=O 4 

I Y  

Figure 15. A critical subsurface point near the leading edge, for 
a cylindrical single crystal contact of width 2a. 

Variation of Azis even greater at -65%, due to a 15" primary 
axis tilt from Case A. This can mean large variations in fatigue 
life between different blades, under the same loading 
conditions, as a result of blade-to-blade variations in primary 
and secondary crystallographic orientation. 

Figure 16. Variation of Asat the critical point shown in Figure 
15 as a fimction of secondary crystallographic orientation 8. 

(primary orientation = Case A) 

A detailed evaluation of subsurface stresses in cylindrical and 
spherical orthotropic FCC single crystal nonconformal contacts 
is presented, using analytical and numerical techniques. Effects 
of variation in primary and secondary crystallographic 
orientation on subsurface stresses are included. Evaluation of 
subsurface stresses is an essential part of contact fatigue life 
calculations at damper contacts and dovetail attachment 
regions. A two-dimensional analytical solution for subsurface 

stresses in cylindrical single crystal contacts is presented, based 
on an adaptation of a stress function approach by Lekhnitskii 
[l]. Lekhnitskii's method for an anisotropic half space in 
generalized plane deformation has been adapted to a FCC 
orthotropic half space. The analytical solution showed excellent 
agreement with the 3-D FEA results. It was observed that the 3- 
D FEA stress field approaches the 2-D generalized plane strain 
solution after a short distance from the edges, indicating that 
the analytical solution could be used effectively for many 
practical 3-D contact problems. The advantage of the analytical 
solution is that it is accurate, and extremely quick to compute, 
anywhere in the computational domain. 

Three-dimensional FEA results for the spherical single crystal 
contact are presented. An effective contact modulus for the 
single crystal half space, Eor,ho, and contact radius, ao,ho, (Eq. 
15), is shown to be effective in calculating the contact patch 
size. The FEA of the contact problem can be greatly simplified 
by using a,,,,, and applying the normal pressure based on 
Hertzian assumptions over the contact patch. It is demonstrated 
that this applied stress problem, yields accurate subsurface 
stresses and greatly simplifies the FEA by avoiding the use 
contact elements. For a fixed normal load, the, Evrrho and aortho 
values were found to be relatively insensitive to variations in 
crystallographic orientation. Hence the Evr,ho and aorth0 values 
based on Case A, ( e o )  orientation can be used for nearly all 
practical blade casting crystallographic orientation deviations 
from the ideal. This lends further credibility to using the 
simulated contact model for FEA. The simulated contact 
approach is very advantageous for performing repeated 
subsurface stress calculations required for fatigue life 
evaluation. 

It must be noted that even though the contact area and normal 
pressure does not vary substantially with crystal orientation, the 
subsurface stresses are a strong function of orientation. 
Therefore the resolved shear stresses on the slip systems, and 
hence fatigue life, are a strong function of crystallographic 
orientation. It is shown that there can be an order of magnitude 
variation in contact fatigue life between different blades under 
the same loading conditions, as a result of blade-to-blade 
variations in primary and secondary crystallographic 
orientation. 

Obtaining accurate subsurface stress results for anisotropic 
single crystal contact problems require extremely refined 3-D 
finite element grids, especially in the edge of contact region. 
Obtaining resolved shear stresses on principal slip planes also 
involves considerable post-processing work. For these reasons 
it is very advantageous to develop analytical solution schemes 
for subsurface stresses, whenever possible. 
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